3.33 \(\int \frac {a+b \sin ^{-1}(c x)}{x (d-c^2 d x^2)} \, dx\)

Optimal. Leaf size=71 \[ -\frac {2 \tanh ^{-1}\left (e^{2 i \sin ^{-1}(c x)}\right ) \left (a+b \sin ^{-1}(c x)\right )}{d}+\frac {i b \text {Li}_2\left (-e^{2 i \sin ^{-1}(c x)}\right )}{2 d}-\frac {i b \text {Li}_2\left (e^{2 i \sin ^{-1}(c x)}\right )}{2 d} \]

[Out]

-2*(a+b*arcsin(c*x))*arctanh((I*c*x+(-c^2*x^2+1)^(1/2))^2)/d+1/2*I*b*polylog(2,-(I*c*x+(-c^2*x^2+1)^(1/2))^2)/
d-1/2*I*b*polylog(2,(I*c*x+(-c^2*x^2+1)^(1/2))^2)/d

________________________________________________________________________________________

Rubi [A]  time = 0.11, antiderivative size = 71, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 5, integrand size = 25, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.200, Rules used = {4679, 4419, 4183, 2279, 2391} \[ \frac {i b \text {PolyLog}\left (2,-e^{2 i \sin ^{-1}(c x)}\right )}{2 d}-\frac {i b \text {PolyLog}\left (2,e^{2 i \sin ^{-1}(c x)}\right )}{2 d}-\frac {2 \tanh ^{-1}\left (e^{2 i \sin ^{-1}(c x)}\right ) \left (a+b \sin ^{-1}(c x)\right )}{d} \]

Antiderivative was successfully verified.

[In]

Int[(a + b*ArcSin[c*x])/(x*(d - c^2*d*x^2)),x]

[Out]

(-2*(a + b*ArcSin[c*x])*ArcTanh[E^((2*I)*ArcSin[c*x])])/d + ((I/2)*b*PolyLog[2, -E^((2*I)*ArcSin[c*x])])/d - (
(I/2)*b*PolyLog[2, E^((2*I)*ArcSin[c*x])])/d

Rule 2279

Int[Log[(a_) + (b_.)*((F_)^((e_.)*((c_.) + (d_.)*(x_))))^(n_.)], x_Symbol] :> Dist[1/(d*e*n*Log[F]), Subst[Int
[Log[a + b*x]/x, x], x, (F^(e*(c + d*x)))^n], x] /; FreeQ[{F, a, b, c, d, e, n}, x] && GtQ[a, 0]

Rule 2391

Int[Log[(c_.)*((d_) + (e_.)*(x_)^(n_.))]/(x_), x_Symbol] :> -Simp[PolyLog[2, -(c*e*x^n)]/n, x] /; FreeQ[{c, d,
 e, n}, x] && EqQ[c*d, 1]

Rule 4183

Int[csc[(e_.) + (f_.)*(x_)]*((c_.) + (d_.)*(x_))^(m_.), x_Symbol] :> Simp[(-2*(c + d*x)^m*ArcTanh[E^(I*(e + f*
x))])/f, x] + (-Dist[(d*m)/f, Int[(c + d*x)^(m - 1)*Log[1 - E^(I*(e + f*x))], x], x] + Dist[(d*m)/f, Int[(c +
d*x)^(m - 1)*Log[1 + E^(I*(e + f*x))], x], x]) /; FreeQ[{c, d, e, f}, x] && IGtQ[m, 0]

Rule 4419

Int[Csc[(a_.) + (b_.)*(x_)]^(n_.)*((c_.) + (d_.)*(x_))^(m_.)*Sec[(a_.) + (b_.)*(x_)]^(n_.), x_Symbol] :> Dist[
2^n, Int[(c + d*x)^m*Csc[2*a + 2*b*x]^n, x], x] /; FreeQ[{a, b, c, d, m}, x] && IntegerQ[n] && RationalQ[m]

Rule 4679

Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)/((x_)*((d_) + (e_.)*(x_)^2)), x_Symbol] :> Dist[1/d, Subst[Int[(a
 + b*x)^n/(Cos[x]*Sin[x]), x], x, ArcSin[c*x]], x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[c^2*d + e, 0] && IGtQ[n
, 0]

Rubi steps

\begin {align*} \int \frac {a+b \sin ^{-1}(c x)}{x \left (d-c^2 d x^2\right )} \, dx &=\frac {\operatorname {Subst}\left (\int (a+b x) \csc (x) \sec (x) \, dx,x,\sin ^{-1}(c x)\right )}{d}\\ &=\frac {2 \operatorname {Subst}\left (\int (a+b x) \csc (2 x) \, dx,x,\sin ^{-1}(c x)\right )}{d}\\ &=-\frac {2 \left (a+b \sin ^{-1}(c x)\right ) \tanh ^{-1}\left (e^{2 i \sin ^{-1}(c x)}\right )}{d}-\frac {b \operatorname {Subst}\left (\int \log \left (1-e^{2 i x}\right ) \, dx,x,\sin ^{-1}(c x)\right )}{d}+\frac {b \operatorname {Subst}\left (\int \log \left (1+e^{2 i x}\right ) \, dx,x,\sin ^{-1}(c x)\right )}{d}\\ &=-\frac {2 \left (a+b \sin ^{-1}(c x)\right ) \tanh ^{-1}\left (e^{2 i \sin ^{-1}(c x)}\right )}{d}+\frac {(i b) \operatorname {Subst}\left (\int \frac {\log (1-x)}{x} \, dx,x,e^{2 i \sin ^{-1}(c x)}\right )}{2 d}-\frac {(i b) \operatorname {Subst}\left (\int \frac {\log (1+x)}{x} \, dx,x,e^{2 i \sin ^{-1}(c x)}\right )}{2 d}\\ &=-\frac {2 \left (a+b \sin ^{-1}(c x)\right ) \tanh ^{-1}\left (e^{2 i \sin ^{-1}(c x)}\right )}{d}+\frac {i b \text {Li}_2\left (-e^{2 i \sin ^{-1}(c x)}\right )}{2 d}-\frac {i b \text {Li}_2\left (e^{2 i \sin ^{-1}(c x)}\right )}{2 d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.10, size = 105, normalized size = 1.48 \[ \frac {-a \log \left (1-c^2 x^2\right )+2 a \log (x)+i b \text {Li}_2\left (-e^{2 i \sin ^{-1}(c x)}\right )-i b \text {Li}_2\left (e^{2 i \sin ^{-1}(c x)}\right )+2 b \sin ^{-1}(c x) \log \left (1-e^{2 i \sin ^{-1}(c x)}\right )-2 b \sin ^{-1}(c x) \log \left (1+e^{2 i \sin ^{-1}(c x)}\right )}{2 d} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[(a + b*ArcSin[c*x])/(x*(d - c^2*d*x^2)),x]

[Out]

(2*b*ArcSin[c*x]*Log[1 - E^((2*I)*ArcSin[c*x])] - 2*b*ArcSin[c*x]*Log[1 + E^((2*I)*ArcSin[c*x])] + 2*a*Log[x]
- a*Log[1 - c^2*x^2] + I*b*PolyLog[2, -E^((2*I)*ArcSin[c*x])] - I*b*PolyLog[2, E^((2*I)*ArcSin[c*x])])/(2*d)

________________________________________________________________________________________

fricas [F]  time = 0.57, size = 0, normalized size = 0.00 \[ {\rm integral}\left (-\frac {b \arcsin \left (c x\right ) + a}{c^{2} d x^{3} - d x}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*arcsin(c*x))/x/(-c^2*d*x^2+d),x, algorithm="fricas")

[Out]

integral(-(b*arcsin(c*x) + a)/(c^2*d*x^3 - d*x), x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int -\frac {b \arcsin \left (c x\right ) + a}{{\left (c^{2} d x^{2} - d\right )} x}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*arcsin(c*x))/x/(-c^2*d*x^2+d),x, algorithm="giac")

[Out]

integrate(-(b*arcsin(c*x) + a)/((c^2*d*x^2 - d)*x), x)

________________________________________________________________________________________

maple [A]  time = 0.09, size = 164, normalized size = 2.31 \[ -\frac {a \ln \left (c x +1\right )}{2 d}+\frac {a \ln \left (c x \right )}{d}-\frac {a \ln \left (c x -1\right )}{2 d}+\frac {b \arcsin \left (c x \right ) \ln \left (1-\left (i c x +\sqrt {-c^{2} x^{2}+1}\right )^{2}\right )}{d}-\frac {b \arcsin \left (c x \right ) \ln \left (1+\left (i c x +\sqrt {-c^{2} x^{2}+1}\right )^{2}\right )}{d}+\frac {i b \dilog \left (1+\left (i c x +\sqrt {-c^{2} x^{2}+1}\right )^{2}\right )}{2 d}-\frac {i b \dilog \left (1-\left (i c x +\sqrt {-c^{2} x^{2}+1}\right )^{2}\right )}{2 d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+b*arcsin(c*x))/x/(-c^2*d*x^2+d),x)

[Out]

-1/2*a/d*ln(c*x+1)+a/d*ln(c*x)-1/2*a/d*ln(c*x-1)+b/d*arcsin(c*x)*ln(1-(I*c*x+(-c^2*x^2+1)^(1/2))^2)-b/d*arcsin
(c*x)*ln(1+(I*c*x+(-c^2*x^2+1)^(1/2))^2)+1/2*I*b/d*dilog(1+(I*c*x+(-c^2*x^2+1)^(1/2))^2)-1/2*I*b/d*dilog(1-(I*
c*x+(-c^2*x^2+1)^(1/2))^2)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ -\frac {1}{2} \, a {\left (\frac {\log \left (c x + 1\right )}{d} + \frac {\log \left (c x - 1\right )}{d} - \frac {2 \, \log \relax (x)}{d}\right )} - b \int \frac {\arctan \left (c x, \sqrt {c x + 1} \sqrt {-c x + 1}\right )}{c^{2} d x^{3} - d x}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*arcsin(c*x))/x/(-c^2*d*x^2+d),x, algorithm="maxima")

[Out]

-1/2*a*(log(c*x + 1)/d + log(c*x - 1)/d - 2*log(x)/d) - b*integrate(arctan2(c*x, sqrt(c*x + 1)*sqrt(-c*x + 1))
/(c^2*d*x^3 - d*x), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \frac {a+b\,\mathrm {asin}\left (c\,x\right )}{x\,\left (d-c^2\,d\,x^2\right )} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a + b*asin(c*x))/(x*(d - c^2*d*x^2)),x)

[Out]

int((a + b*asin(c*x))/(x*(d - c^2*d*x^2)), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ - \frac {\int \frac {a}{c^{2} x^{3} - x}\, dx + \int \frac {b \operatorname {asin}{\left (c x \right )}}{c^{2} x^{3} - x}\, dx}{d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*asin(c*x))/x/(-c**2*d*x**2+d),x)

[Out]

-(Integral(a/(c**2*x**3 - x), x) + Integral(b*asin(c*x)/(c**2*x**3 - x), x))/d

________________________________________________________________________________________